Formation of Stable Spiro[4.4] Ortho Ester Aminals during the Synthesis of the $\mathrm{C}_{26}-\mathrm{C}_{32}$ Oxazole Fragment of Calyculin C

Petri M. Pihko and Ari M. P. Koskinen*

Department of Chemistry, University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland

Maija J. Nissinen and Kari Rissanen
Department of Chemistry, University of J yväskylä,
P.O. Box 35, FIN-40351 J yväskylä, Finland

Received August 17, 1998
Ortho ester aminals (compounds with two nitrogen atoms and an oxygen atom bonded to a sp^{3} carbon) are occasionally encountered as side products or intermediates in heterocycle syntheses, ${ }^{1}$ in nucleotide chemistry, ${ }^{2}$ and in flavonoid chemistry. ${ }^{3}$ Open-chain ortho ester aminals are prone to disproportionation and further hydrolysis by water or alcohols, but the corresponding polycydic ortho ester aminals are often stable enough to be isolated. In contrast to the ortho esters, which are rapidly gaining importance in organic synthesis, ${ }^{4}$ the corresponding aminals have only scarcely been used, possibly due to their instability.
The reasons for the hydrolytic stability of the polycyclic ortho ester aminals relative to their open-chain counterparts have not been discussed in detail in the literature, although stereoelectronic effects are likely to play a central role. ${ }^{5}$ The exo-anomeric effect has been invoked as an explanation for the stability of three simpler derivatives, a monocyclic ortho ester aminal and two spirocydlic analogues. ${ }^{6}$ Herein, we report the facile formation of stable spi rocyclic [4.4] ortho ester aminals and characterization of one isomer (4b) with X-ray crystallography. These compounds cannot benefit from anomeric stabilization (vide infra), and an alternative explanation for their stability as well as the lability of the open-chain derivatives is therefore required and presented.

The final step of the synthesis of the $\mathrm{C}_{26}-\mathrm{C}_{32}$ oxazole fragment (2a) of calyculin C (1) ${ }^{7}$ (Scheme 1) requires the

[^0]Scheme 1

Scheme 2
2a, 3a, 4a: $R_{1}=H, R_{2}=M e, R_{3}=M e$ 2b, 3b, 4b: $R_{1}=M e, R_{2}=H, R_{3}=M e$

B) i) LiHMDS; TMSCl ii) KHMDS; l_{2} - $78{ }^{\circ} \mathrm{C}$, THF

oxidation of the oxazolines 3a/3b to the corresponding oxazoles 2a/2b (Scheme 2). ${ }^{8}$ Along with the desired oxazoles, another set of diastereomeric compounds were formed in up to 52% yield (Table 1). To our surprise, these compounds proved to be the isomeric spirocyclic ortho ester aminals (diastereomeric due to the presence of an additional chiral spiro atom) (4a, pure diastereomer; 4b: $\mathbf{4 b}^{\prime}, 2: 1$ ratio). ${ }^{9}$ Recrystallization afforded the pure diastereomer $\mathbf{4 b}$ from the mixture $\mathbf{4 b} / \mathbf{4 b} \mathbf{b}^{\prime}$.

Both oxidation methods employed ${ }^{10}$ depend on the generation of the ester enolate and subsequent oxidative removal of the oxazol ine ring hydrogen. ${ }^{11}$ The formation of ortho ester aminals 4a/4b in both cases indicates that

[^1]Table 1. Oxidation of Oxazolines $3 \mathrm{a}-\mathrm{c}$ to the Oxazoles 2a-c and the Spiro Compounds $4 \mathbf{4}-\mathbf{c}$

substrate	conditions ${ }^{\text {a }}$	yield of oxazole (\%)	yield of $\mathbf{4 a}$, $\mathbf{4 b} / \mathbf{4} \mathbf{b}^{\prime}$ or $\mathbf{4 c}$
2a	A	29	52
2a	B	42	25
2b	A	42	40
2b	B $^{\text {b }}$	30	30
2c	A	30	35

${ }^{\text {a }}$ See Scheme 2. ${ }^{\text {b }}$ NaHMDS was employed instead of LiHMDS in the first step.

the carbamate proton can also be removed under these conditions, accompanied by ring closure and oxidation.

A detailed investigation into the mechanism is not possible at this time. We did, however, study the effect of the two methyl substituents (which were thought to facilitate the ring closure by the reactive rotamer effect ${ }^{12}$) by conducting the oxidation with the straight-chain oxazoline 3c (Scheme 2), readily available from N-Boc-γ-aminobutyric acid 5 (N-Boc-GABA) (Scheme 3). Again, both the oxazole (2c) and the spirocyclic side product (4c) were formed in nearly equal amounts (Table 1), demonstrating that the 5 -exo-trig ring closure leading to the spirocyclic structure occurs quite readily.

The compounds $\mathbf{4 a - c}$ are remarkably stable to hydrolysis. They were isolated after normal aqueous work$u p^{8}$ and could be readily purified by standard silica gel chromatography. However, examination of the possible anomeric $\mathrm{n}-\sigma^{*}$ interactions within the spiro[4.4] system indicates that very little anomeric stabilization is expected. The only lone pairs available for the anomeric $\mathrm{n}-\sigma^{*}$ interaction are the lone pairs of the ring oxygen ($O(1)$, see Figure 1) and the $s p^{2}$ lone pair at $N(1)$. No antiperiplanar orientation between the $\mathrm{O}(1)$ lone pairs and the two $\mathrm{C}-\mathrm{N} \sigma$ bonds can be attained. The X-ray structure of $\mathbf{4 b}$ (Figure 1) ${ }^{13}$ substantiates this interpretation. The measured bond lengths of the two $\mathrm{C}(3)-\mathrm{N}$ bonds are almost identical (1.439(7) \AA and $1.435(6) \AA$). These values fit fairly well with the average $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}\left(\mathrm{sp}^{2}\right)$ bond length of $1.454(11) \AA$ of acyclic amides. ${ }^{14,15}$ The relative

[^2]

Figure 1. ORTEP plot of molecular structure of $\mathbf{4 b}$. Only one of the two crystallographically independent molecules is shown.
elongation of the $\mathrm{C}(3)-\mathrm{O}(1)$ bond (bond length 1.453(7) \AA) compared to the $\mathrm{C}(1)-\mathrm{O}(1)$ bond (bond length $1.404-$ (6) Â) can be explained by a weak $n-\sigma^{*}$ interaction between the $N(1)$ lone pair and the $C(3)-O(1)$ bond.
Structures having three geminal heteroatoms, such as ortho ester aminals, react by the pathway that cleaves the weakest bond. In aminodihydroxymethane, ab initio calculations indicate that the most stable conformer does not possess maximal anomeric antiperiplanar interactions, resulting in comparatively unreactive bonds. ${ }^{16,17}$ In the case of acyclic ortho ester aminals and aminodihydroxymethane, the stabilization of two $\mathrm{C}-\mathrm{X}$ bonds gives rise to extreme polarization of the remaining $\mathrm{C}-\mathrm{X}$ bond, thus lowering the activation energy for its cleavage. Acyclic ortho ester aminals typically react to give alkoxide and amidinium ions (eq 1): ${ }^{18}$

The relative stability of $\mathbf{4 a - c}$ and related polycyclic ortho ester aminals ${ }^{1-3}$ is attributed to geometric and stereoel edronic constraint-a diminished anomeric effect-

[^3]
(16) (a) Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96, 40484050. (b) Grein, F.; Deslongchamps, P. Can. J . Chem. 1992, 70, 15621572.
(17) F or a review of the anomeric effect and its effects on reactivity, see: Kirby, A. J. Stereoelectronic Effects; Oxford University Press: Oxford, 1996; pp 16-33 and references therein.
(18) Simchen, G. in Methoden der Organischen Chemie (HoubenWeyl), Band E5; Falbe, J., Ed.; Georg Thieme Verlag: Stuttgart, 1985; pp 150-155.
imposed by the rigid spirocydic structure. This reduction in the ionic character of the $\mathrm{C}-\mathrm{X}$ bonds stabilizes the structure.

Experimental Section

General Methods. For the description of general experimental procedures, the solvents used, and for the preparation of compounds $\mathbf{2 a} \mathbf{a} \mathbf{b}, \mathbf{3 a} \mathbf{a}$, and $\mathbf{4 a}, \mathbf{b}$, see ref 8 .
(2S)-Methyl-2-[(4-((tert-Butoxycarbonyl)amino)-1-oxobu-tyl)amino]-3-hydroxypropionate (6). To a solution of 5 (2.03 $\mathrm{g}, 10.0 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in THF (150 mL) at $-23^{\circ} \mathrm{C}$ was added N -methylmorpholine ($1.15 \mathrm{~mL}, 1.06 \mathrm{~g}, 10.5 \mathrm{mmol}, 105 \mathrm{~mol} \%$), followed by isobutyl chloroformate ($1.36 \mathrm{~mL}, 1.43 \mathrm{~g}, 10.5 \mathrm{mmol}$, $105 \mathrm{~mol} \%$). The resultant cloudy mixture was stirred at -23 ${ }^{\circ} \mathrm{C}$ for 15 min , and I -serine methyl ester hydrochloride (1.63 g , $10.5 \mathrm{mmol}, 105 \mathrm{~mol} \%$) was then added, followed by N methylmorpholine ($1.15 \mathrm{~mL}, 1.06 \mathrm{~g}, 10.5 \mathrm{mmol}, 105 \mathrm{~mol} \%$). The mixture was then allowed to warm slowly to room temperature. After 18 h , the mixture was quenched with $5 \% \mathrm{NaHCO}_{3}$ sol ution $(300 \mathrm{~mL})$ and extracted with EtOAc $(6 \times 100 \mathrm{~mL})$. The combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated to afford 6 as a glass ($3.03 \mathrm{~g}, 100 \%$): $[\alpha]_{\mathrm{D}}=-5.3(\mathrm{c}=1.00, \mathrm{MeOH})$; IR ($\left.\mathrm{CDCl}_{3}\right)$ $3447,2980,1743,1696,1517,1439,1368,1252,1170,1065 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz$) \delta 6.96$ (br d, $\left.1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}\right), 4.97(\mathrm{~m}, 1 \mathrm{H})$, $4.62(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.93(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~m}$, $1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{app} \mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=2.5,6.8 \mathrm{~Hz}), 1.87$ (septet, $1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$), 1.74 (br septet, $1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$), 1.40 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 172.8,171.0,156.7,79.7,62.7$, 54.8, 52.5, 39.1, 32.9, 28.3, 26.1. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 51.30; H, 7.95; N, 9.20. Found: C, 51.13; H, 8.23; N, 8.82.
(4S)-2-[3-((tert-Butoxycarbonyl)amino)propyl]-2-oxazo-line-4-carboxylic Acid, Methyl Ester (3c). To a solution of dipeptide $6(1.00 \mathrm{~g}, 3.29 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF $(40 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added Burgess reagent ($1.02 \mathrm{~g}, 4.28 \mathrm{mmol}, 130 \mathrm{~mol} \%$) over a period of 10 min , and the resulting solution was then allowed to warm to room temperature. After 1 h , the solution was heated to reflux for 3 h and allowed to cool. Evaporation of the solvent gave a residue that was partitioned between 10% MTBE/toluene (50 mL) and saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with 10% MTBE/toluene ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting oil was purified by flash chromatography ($4 \times 16 \mathrm{~cm}$ silica, 100% EtOAc) to give 3c as a col orless oil ($0.53 \mathrm{~g}, 56 \%$): $[\alpha]_{\mathrm{D}}=+95.1$ ($c=1.00, \mathrm{MeOH}$); IR (CDCl ${ }_{3}$) 3455, 2980, 1740, 1710, 1660, 1507, 1368, 1249, 1173 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 4.74$ (ddt, $1 \mathrm{H}, \mathrm{J}=1.1,7.6,10.7$ $\mathrm{Hz}), 4.49$ (dd, $1 \mathrm{H}, \mathrm{J}=7.6,8.6 \mathrm{~Hz}), 4.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.6,10.7$ $\mathrm{Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.38(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=$ $1.1,7.0 \mathrm{~Hz}$), 1.85 (qn, $2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$), $1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}) \delta 171.7,170.3,155.9,79.2,69.4,68.0,52.6,39.8,28.4$, 26.1, 25.3; HRMS ($\mathrm{Cl}, \mathrm{NH}_{3}$) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$ 287.1607, found 287.1602, $\Delta=1.7 \mathrm{ppm}$.

2-[3-((tert-Butoxycarbonyl)amino)propyl]-2-oxazole-4carboxylic Acid, Methyl Ester (2c) and (\pm)-6-(1,1-Dimethylethyl) 3-Methyl-1-oxa-4,6-diazaspiro[4.4]non-3-ene-3,6dicarboxylate (4c). To a suspension of $\mathrm{CuBr}_{2}(1.47 \mathrm{~g}, 6.56$ mmol, $400 \mathrm{~mol} \%$) in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at room temperature was added hexamethylenetetramine ($920 \mathrm{mg}, 6.56$ $\mathrm{mmol}, 400 \mathrm{~mol} \%$) as a solid, followed by addition of DBU (980 $\mu \mathrm{L}, 1.00 \mathrm{~g}, 6.56 \mathrm{mmol}, 400 \mathrm{~mol} \%)$. The reaction mixture turned dark brown. After the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, a solution of oxazoline 3c ($470 \mathrm{mg}, 1.64 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added via cannula. The reaction mixture was allowed to warm to room temperature. After 2 h , a 1:1 solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and 25% aqueous $\mathrm{NH}_{3}(50 \mathrm{~mL})$ was added, and the blue mixture was extracted with EtOAc (4×60
mL). The combined organic extracts were washed with brine (30 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. The crude product thus obtained was purified by flash chromatography ($3 \times 17 \mathrm{~cm}$ of silica, linear gradient of 50% EtOAc/hexanes to 100% EtOAc) to afford the spirocyclic (\pm)-4c as an oil ($138 \mathrm{mg}, 30 \%$), followed by oxazole 2c as a colorless oil ($162 \mathrm{mg}, 35 \%$). Data for 2c: IR (CDCl ${ }_{3}$) 3456, 2980, 1712, 1698, 1588, 1511, 1439, 1368, 1326, 1170, $1113 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 8.16$ ($\mathrm{s}, 1 \mathrm{H}$), 4.67 ($\mathrm{m}, 1$ $\mathrm{H}), 3.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.87(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.99(\mathrm{qn}$, $2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.43(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 168.9$, 161.8, 155.0, 143.6, 133.1, 79.1, 52.0, 44.7, 41.8, 30.9, 28.3, 21.0, 18.8; HRMS (EI) calcd for $\mathrm{M}^{+}\left(\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$ 284.1372, found $284.1369, \Delta=1.1 \mathrm{ppm}$. Data for (\pm)-4c: IR $\left(\mathrm{CDCl}_{3}\right)$ 2981, 1734, 1699, 1442, 1368, 1285, 1166, $1050 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CDCl}_{2}\right)_{2}\right.$, $365 \mathrm{~K}, 400 \mathrm{MHz}) \delta 5.00$, (br d, $1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=15.0 \mathrm{~Hz}$), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}=10.5,6.4 \mathrm{~Hz}$), 3.56 (dt, $1 \mathrm{H}, \mathrm{J}=10.5,7.1 \mathrm{~Hz}), 2.38(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=13.2,7.9 \mathrm{~Hz}$), $2.20(\mathrm{qn}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ((CDCl $\left.)_{2}, 365 \mathrm{~K}, 100 \mathrm{MHz}\right) \delta 163.6,160.8,152.4,122.4,79.9$, 74.9, 52.4, 47.9, 39.6, 28.1, 21.0; HRMS (EI) calcd for MH^{+} ($\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}$) 285.1450, found 285.1401, $\Delta=17 \mathrm{ppm}$.
Data for 4a. (5R/S,7R,9S)-6-(1,1-Dimethylethyl) 3-methyl 7,9-dimethyl-1-oxa-4,6-diazaspiro[4.4]non-3-ene-3,6-dicarboxylate: colorless oil; $[\alpha]_{\mathrm{D}}=-30.7(\mathrm{c}=0.65, \mathrm{MeOH})$; IR $\left(\mathrm{CDCl}_{3}\right) 2977,1732,1695,1443,1393,1368,1333,1276,1140$, $1076 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CDCl}_{2}\right)_{2}, 365 \mathrm{~K}\right) \delta 5.00(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=15.0 \mathrm{~Hz}$), $4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}), 3.95$ (obs ddq, $1 \mathrm{H}, \mathrm{J}=$ 9.1, 5.9 Hz), 3.92 (s, 3 H), 2.36 (ddq, $1 \mathrm{H}, \mathrm{J}=12.0,7.0,6.7 \mathrm{~Hz}$), 2.20 (app dt, $1 \mathrm{H}, \mathrm{J}=12.0,6.7 \mathrm{~Hz}$), 1.47 (obs ddd, J $=12.0,9.1$ Hz), 1.43 (s, 9 H), 1.37 (d, $3 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}$), $0.89(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0$ $\mathrm{Hz})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left(\mathrm{CDCl}_{2}\right)_{2}, 365 \mathrm{~K}$) δ 163.4, 160.9, 152.7, $124.8,79.6,75.3,53.6,52.4,43.3,37.6,28.2,21.6,12.4$; HRMS (EI) calcd for $\mathrm{M}^{+}\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\right) 312.1685$, found 312.1662, $\Delta=$ 7.4 ppm.

Data for recrystallized, pure diastereomer 4b. (5R,7S,9S)-6-(1,1-Dimethylethyl) 3-methyl 7,9-dimethyl-1-oxa-4,6-diazaspiro[4.4]non-3-ene-3,6-dicarboxylate: $[\alpha]_{D}=$ +37.1 ($\mathrm{c}=0.64, \mathrm{MeOH}$); mp 93-95 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$ /isooctane); IR (CDCl_{3}, for a mixture of $\mathbf{4 b} / 4 \mathbf{b}^{\prime}$) 2977, 1732, 1697, 1442, 1393, 1367, 1295, 1147, $1070 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CDCl}_{2}\right)_{2}, 370$ K) $\delta 4.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}), 4.12$ (app qn, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$), $3.94(\mathrm{~s}, 3 \mathrm{H}$), 2.81 (septet, $1 \mathrm{H}, \mathrm{J}=$ 6.7 Hz), 1.88 (dt, $1 \mathrm{H}, \mathrm{J}=8.1,12.0 \mathrm{~Hz}$), 1.67 (dd, J $=12.0,6.7$ $\mathrm{Hz}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$ each), $0.87(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $=6.7 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz},\left(\mathrm{CDCl}_{2}\right)_{2}, 370 \mathrm{~K}\right) \delta 164.0,160.7$, 152.7, 123.4, 79.7, 75.6, 53.6, 52.4, 41.3, 36.2, 28.1, 20.2, 11.2. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 57.68; $\mathrm{H}, 7.74 ; \mathrm{N}, 8.97$. Found: C, 57.40; H, 7.72; N, 8.84.

Acknowledgment. The authors wish to thank Mika Lindvall for very hel pful comments, the Trace Element Laboratory of the University of Oulu for elemental analyses, Ms. Päivi J oensuu, University of Oulu, for the MS analyses, and the Academy of Finland and the Ministry of Education for financial support.

Supporting Information Available: Tables of crystal data, atomic coordinates, bond lengths and angles, and anisotropic thermal parameters for $\mathbf{4 b}$, comparison of the bond lengths of $\mathbf{4 b}$ to the oxazoline $\mathbf{7}$, and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of 2c, 3c, 4a-c, and $\mathbf{6}$ (22 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

J O981674

[^0]: * To whom correspondence should be addressed. Phone: +3588553 1630. Fax: +358 8553 1629. E-mail: Ari.K oskinen@oulu.fi.
 (1) F or examples, see: (a) Feinauer, R. Angew. Chem. 1966, 78, 938. (b) Doleschall, G.; Lempert, K. Tetrahedron 1968, 24, 5529-5545. (c) Fryer, R. I.; Earley, J . V.; Blount, J. F. J . Org. Chem. 1977, 42, 22122219. (d) Gotthardt, H.; Schenk, K.-H. Angew. Chem. 1985, 97, 604606. (e) Knölker, H.-J .; Boese, R.; Döring, D.; El-Ahl, A.-A.; Hitzemann, R.; J ones, P. G. Chem. Ber. 1992, 125, 1939-1951. (e) Kappe, C. O.; Peters, K.; Peters, E.-M. J. Org. Chem. 1997, 62, 3109-3118. (f) Couture, P.; Warkentin, J. Can. J. Chem. 1997, 75, 1264-1280, 12811294.
 (2) F or an example, see: Anzai, K.; Uzawa, J. J . Org. Chem. 1984, 49, 5076-5080.
 (3) Lee, Y. T.; Fisher, J . F. J . Org. Chem. 1993, 58, 3712-3721.
 (4) F or a review of ortho esters, see: DeWolfe, R. H. Synthesis 1974, 153-172. For recent use of ortho esters in synthesis, see: Charette, A. B.; Chua, P. Tetrahedron Lett. 1997, 38, 8499-8502 and references therein.
 (5) Poje, N.; Palkovic, A.; Poje, M. J. Heterocycl. Chem. 1997, 34, 477-483.
 (6) (a) Bertolasi, V.; Ferretti, V.; Gilli, G.; Marchetti, P.; D'Angeli, F. J. Chem. Soc., Perkin Trans. 2 1990, 2135-2140.
 (7) Isolation and characterization: Kato, Y.; Fusetani, N.; M atsunaga, S.; Hashimoto, K.; K oseki, K. J. Org. Chem. 1988, 53, 39303932. F or references to recent total or partial syntheses of calyculins, see ref 8.

[^1]: (8) Pihko, P. M.; Koskinen, A. M. P. J . Org. Chem. 1998, 63, 9298.
 (9) The isomer ratios were determined by ${ }^{1} \mathrm{H}$ NMR. At 365 K , 4a gave only a single set of signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. We are grateful to an anynomous reviewer for drawing our attention to this point.
 (10) (a) Method A: Barrish, J. C.; Singh, J.; Spergel, S. H.; Han, W.; Kissick, T. P.; Kronenthal, D. R.; Mueller, R. H.J. Org. Chem. 1993, 58, 4494-4496. (b) Method B: see ref 8.

[^2]: (11) A mechanistic rationalization involving two single-electron transfers (to Cu(II) or to I_{2}) is presented in ref 10a. These transfers are not necessarily synchronous.
 (12) F or a discussion of the reactive rotamer effect, see: J ung, M. E.; Gervay, J . J. Am. Chem. Soc. 1991, 113, 224-232.
 (13) See the Supporting Information for the X-ray data. There are two crystallographically independent molecules in the unit cell, which have essentially identical geometries and bond lengths. In the text, only the dimensions of the molecule A are discussed.
 (14) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19.
 (15) The bond lengths within the oxazoline ring are also very close to those measured for a 4 -substituted Δ^{3}-1,3-oxazoline 7 (see Table 7 in the Supporting Information): Meetsma, A.; van Leusen, D.; van Leusen, A. M. Acta Crystallogr., Sect. C (Cryst. Struct. Commun.) 1993,

[^3]: 49, 351. This molecule was selected for comparison as it represents the least substituted Δ^{3}-1,3-oxazoline derivative in the Cambridge Crystallographic Data Centre archive (October 1997 release).

